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Molecular hydrodynamic approach to dynamical correlations in quantum liquids
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A quantum molecular hydrodynamic formalism is developed for the study of dynamics in quantum liquids.
The method combines exact static input, generated by path-integral Monte Carlo, and an approximate form of
the quantum memory function for the solution of the exact quantum generalized Langevin equation under
consideration. This methodology is applied to the study of the spectrum of density fluctuations in liquid
para-H. Using a physically motivated approximation for the memory function, semiquantitative agreement is
obtained forS(k,w) in comparison to the recent experiments of Bermefj@l. [Phys. Rev. Lett84, 5359
(2000]. Improvement of the methodology and future applications are discussed.
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Understanding dynamical phenomena in highly quanturmapplied successfully to a great number of physically interest-
liguids has been at the forefront of theoretical physics foring classical problems, including the study of transph&—
decades. New experimental techniques continue to uncové#d], density and momentum fluctuations2—14, solvation
fascinating behavior in such systems. For example, muchdynamicq15], Raman spectroscop$6], and vibrational re-
experimental and theoretical effort has been focused on chalaxation [15]. An appealing feature of classical molecular
acterizing the dynamics of impurity molecules embedded irhydrodynamics is that dynamics may be approximated from
superfluid liquid nanodroplefsl—4]. These papers are only static, equilibriuminput alone. While only static input is re-
important from the fundamental standpoint, but it may alsoquired and, therefore, only short-time behavior may be rig-

lead to different approaches for molecular self-assembly. Therously captured, often very reasonable, nearly quantitative,

study of liquid para-H has also been of much current inter- long-timebehavior is generated within this approach.
est. Experimental breakthroughs have led to direct measure- The method developed here to obtain time correlation
ment of both the incoherefb] and coherenf6,7] dynamic  functions in quantum liquids is based on augmenting the
structure factors in this system. A recent experimental studgxactquantum generalized Langevin equati@®GLE) for
has even suggested that paradiday exhibit superfluid be- the dynamical variable witexactstatic structural input and a
havior under certain condition8]. suitable approximation to the memory function of the QGLE.
The theoretical calculation of time correlation functions in The power of our method will be demonstrated by showing
guantum liquids is an extremely difficult task. This has led tothat even simple approximations to the memory function
a variety of different techniques to include the effect of quandmay produce accurate results for the time correlation func-
tum fluctuations on the dynamic response in liquids. Most oftions in quantum liquids. Furthermore, we suggest that a
these techniques are “semiclassical” in the sense that thpowerful framework for the calculation of the dynamics in
dynamic response is calculated with the aicclafssicaltra-  finite temperature quantum liquids may be built upon the
jectories of some kind9]. While such techniques appear techniques discussed here, and may be used to compute
promising, technical issues associated with most semiclassgplethora of important observable dynamical quantities in
cal methodologies have prevented their use in describing dyguantum liquids. A similar “quantum molecular hydrody-
namics in realistic quantum liquids. Another class of meth-namics” approach has been suggested in the [8&t19,
ods that has been used with success in a variety of problenf®wever, it has never been combined with numerica)gct
and does not make use of real-time trajectories involves saneans of calculating all of the structural input necessary for
phisticated numerical analytical continuation of exacta proper implementation and solution of the QGLE.
imaginary-time path-integral Monte Carlo dat&@IMCD) For simplicity we focus on a particular model system,
[10]. The application of this method to the understanding ofnamely, on liquid para-§ and derive the QGLE for the
dynamical fluctuations in quantum liquids has so far not beelintermediate scattering functioR(k,t) that describes the
completely successful due to numerical instabilities involvedcorrelation of density fluctuations. Well-defined collective
in such methods that smooth out the distinct spectral featuregensity excitations were recently observed experimentally in
of various frequency dependent susceptibilifies]. this system[6,7], even though classically such excitations
In view of the above, it is highly important to develop and are not expected to survive in liquids of this class, except at
implement flexible and accurate approaches for the study axtremely low wave-vector values. This strongly suggests
dynamical fluctuations in quantum liquids. For classical lig-that quantum fluctuations have a large influence on the col-
uids, a sophisticated framework called “molecular hydrody-lective dynamics in this low-temperature liquid. While only
namics” has been developed for the computation of dynamidensity fluctuations in liquid para-His studied here, the
cal observablegl2—-14. This approach involves formulating methods developed hold the promise of general utility, even
an exactgeneralized Langevin equatidGLE) for the dy-  under superfluid conditions where previous path-integral re-
namical variable of interest and making approximations tdated techniques have dramatically failed to properly repro-
the memory function of the GLE. This approach has beerduce experimentally observed dynamical phenonjéih
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The derivation of the QGLE for the intermediate scatter- 4
ing functionF(k,t) follows from the work of Zwanzid20]
and Mori[21,22. We begin with the definition of two dy-
namical variables—the quantum density operatfa(
=3N_,é¥"a and the longitudinal current operato
= (1/2m) (1K) =N _ [ (k- po) € a+ ¥ a(p,-k)]. These
two operators satisfy the continuity equatign=ikj,,
where the dot denotes a time derivative. Next we define
the projector P*=((A",-- - }/(AT,A)A%,  where A*
=1/ph[E"e A\ is the Kubo transfornj23] of A, and
the vector operatoA combines the two dynamical variables
px andj, to form a row vectorA=[ py ,j,]. Using the pro-
jection operator defined above the time evolution of the
Kubo transform of the intermediate scattering function, 2 : ' : '

F. (k)= (LN)(pi pi(1)), is given by ' o/

.=+ Bare Potential
-- Classical PMF | 1
— Quantum PMF

Potential / kBT
T

d?F(k,t)
dt?

5 t dF“(k, ) FIG. 1. A plot of the potentia(dotted ling and the potential of
+wK(k)F"(k,t)+f d7K*“(k,t— T)d—zo. mean force(PMF) for classical(dashed ling and quantum(solid
0 T line) liquid para-H. The thermodynamic point i§=25 K, p
(1) =0.0289 A% for the classical result, andT=14 K, p

. L ) =0.0235 A3 for the quantum result. Note that the quantum fluc-
Equations similar to Eq. (1) have been derived before y ations lead to a significantly softer PMF.

[18,19. In the present paper this equation is augmented with

exact input from path-integral Monte Carlo, and solved W'thquantitative description o8(k, )= [“_dtF(k,t)e“!. It is

an appropriate approximation for the memory function fpr Awell known that for systems with “soft” potentials of mean
realistic system. This will lead to the important conclusion

that even simple approximations K<(k,t) may yield fre- force (PMF), such as liquid metals, this approximation pro-

uency dependent susceptibilities in agreement with the norY—ides a quantitative description &(k, ) for values ofk
quency dep puo 9 near that for whichS(k) reaches its first maximum, and a
trivial features that are experimentally exposed. Note that the

g - ) SemiquantitativeS(k, w) for smaller values ok outside the
above formal expression is very similar to the classical eqUaZ,: + hvdrodvnamic imif12—14. In Fig. (1) we compare
tion of motion for the intermediate scattering functid®]. the PMBI/: foryuantum liquid arézl-ln tr?é tem eraturg and
However, Eq.(1) describes the time evolution of th€ubo densit q fth quia p fof B o FI)[G]t th
transformof the intermediate scattering function and, there- ensity range ot the experiment ot bermebal. o the

fore, is a fully quantum mechanical description. The classicag)':g;];g;ggsz'f ?r:é)ilr:;i:;cj:g?glvldé rﬁgd;gﬂfagogg:'?on; ng_
limit of Eq. (1) is recovered wheri—0.

To obtainF*(k.t) from Eq. (1) one requires as input the pectation that this system is not in the “soft” limit. It should
f fact 'S K d(ih qf O < pkt be noted, however, that quantum fluctuations greatly soften
requency factorw; (k) and the memory functioK*(k,t). v 5\ME between two particles. As clearly can be seen in the
Within the framework of the molecular hydrodynamics ap-

proach developed below, both quantities can be obtainefgure’ the quantum PMF shows a lower frequency of oscil-

f taii librium inout. i.e. f it th tion about its first minimum and a softer repulsive wall
rom static equilibrium Input, 1.., from an appropriate path-y,,, 1he classical PMF does. In fact, the quantum PMF re-

integral Monte Carlo scheme, and thus are also describeg, npieg that of a classical liquid metal, for which the afore-
guantum mechanically. The frequency factor is given by

p " . . mentioned exponential approximation for the memory func-
“’i(Ak)sz‘] (k)/S(k), ~ where  S*(k)=F*(k,0)=(1/N) " {jon produces quantitative results f&(k,®). These facts
X(p,pi(0)) is the Kubo transform of the static structure motivate the use of the simple exponential form for the
factor andJ*(k) = (1/N){j |, £(0)) is the Kubo transform of memory function in quantum liquid para;H
the zero time longitudinal current correlation function. The In view of the above discussion, we assume that the time
memory function is related to the Kubo transform of thedependence of the longitudinal memory functisrf(k,t)
random force, I’:\{kzd]k/dt_Ik[JK(k)/SK(k)]ﬁk, and is follows an exponentlal decay Ia[/YL3,24]
given formally byK*(k,t)= (R} ,RE(t))/[NI*(K)].

The above expression for the memory function combined
with Eq. (1) is simply another way for rephrasing the quan-
tum Wigner-Liouville equation for the dynamical variable
F*(k,t). The difficulty of numerically solving the Wigner-
Liouville equation for a many-body system is shifted to the Tk:l\/m
difficulty of evaluating the memory kernel. For a certain 2 ’
class of classical dense fluids, a simpkponentialapproxi-
mation to the memory function is known to provide a semi-is estimated using the Lovesey approximatj@d] and

K*(K,t)=K*“(k,0)exp( —t/7)

where the relaxation time
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4 k))« 2 k)Y« 3 T T T T
KK(k,O):<w2( N {ef) T

tih)® - S : J/\_'
1.

where A | | | |
0 > . 4 3
k(A"
dn T T | T T T T T
{0"(K))<=( 1)“’2 F(K,t)]—o /S (K) k=035 070
are the normalized frequency momentsSpk, w). Following /\L /l\
1

the classical notation this approximation is referred to as the
guantum viscoelastic modéQVM).

The short-time moments of the Kubo transform of the
intermediate scattering function that determine the longitudi-
nal memory kernel involve thermal averages over an opera-

|
I I ' [
tor that combines positions and momenta of all particles. The e =
term for w?(k) (not given explicitly hergis more compli- ! i .
0 5

S(k,0) (arbitraty units)
i > i

cated and involves higher powers of momenta operators. The
approach we adopt in the present study to calculate these
moments is based on a recent method that we have devel-
oped that uses path-integral Monte CalRiMC) technique

and is suitable for thermal averages of such operators for a F|G. 2. The dynamics structure factor for para-#t T=14 K
many-body systemi25]. We note that the required averagesand p=0.0253 A3 calculated from the quantum viscoelastic
could be obtained from a standard “primitive” path-integral model. The upper panel shows the static structure factor obtained
Monte Carlo algorithm for the ensemble average of operatorom a PIMC simulation. Thé values are in units of AL,

involving momentum and positiori26], however, more
Monte Carlo passes would be required to reach convergenc

3 0

=)

® (meV) o (meV)

that for the approximate Kubo-transformesf(k,w), the
To obtain the dynamic structure factor given by QVM will satisfy the first three even sum rules, while the
PICMD result will not.
Bho While it is beyond the scope of the present paper to give
S(k, w)_ [ ;—( Sk, o), a detailed comparison of the relative merits of other methods
to the approach taken here, it should be noted that the present
technique has some very attractive advantages. First, the
we solve Eq.(1) with the approximate memory function method requires no computation of semiclassical trajectories,
given by the exponential decay law. The PIMC simulationsthus offering a more efficient numerical scheme to approxi-
were performed with 108 particles interacting via themate quantum mechanical correlation functions. Second, as
Silvera-Goldman potential[27] at T=14 K and p is well known in the classical case, the approach taken here
=0.0235 A~3. The staging algorithri28] for Monte Carlo  may be applied tgeneralliquid state correlation functions,
chain moves was employed to compute the numerically exas long as a reasonable approximation to the memory func-
act Kubo-transformed static momentsx 20" Monte Carlo  tion of interest is used. Furthermore, situations where the
moves were made, with an acceptance ratio of approximatelgtatic distribution is not described by Boltzmann statistics
0.35. can easily be handled within the framework of the quantum
In Fig. (2), we show the calculated dynamic structure fac-hydrodynamic approach developed here, since the additional
tor for para-H at a thermodynamic state point very similar complication of proper particle statistics may be absorbed
to the one studied experimentally by Bermejoal. [7]. Al- into the PIMC calculation of the static input. Lastly, since the
though the instrument responsenist included in our calcu-  starting point of the methods used in this work is thect
lation (but hasbeen included in the calculation of R¢7]), QGLE given by Eg.(1), improvements upon simple ap-
the results are clearly in semiquantitative agreement with theroaches such as the QVM may be made with more sophis-
experimental results. In particular, a high intensity peak aticated approximations to the memory function.
finite frequency is observed, and disappears arolnd What is most remarkable about the present calculation is
=1.4 A1 in agreement with the experimem]. The peak the fact that very good agreement with experiment in a non-
positions and widths do show slight differences from thetrivial system may be obtained via a simple approach that
experimental results, as do the simulations presented by Bemakes no use of dynamical trajectoriéhis is significant,
mejo et al. [7]. Comparing our results with the earlier path- since the method proposed is flexible @ntprovable It is
integral centroid molecular dynami¢®ICMD) calculation  known, for example, that the classical viscoelastic approxi-
that did not account for the instrument respof2@] shows mation can underestimate the intensity of the low frequency
that the PICMD results are nearly identical to our simplebehavior ofS(k,w) for small values ok [12]. A means of
QVM results. This agreement is somewhat surprising, giverimprovement here would be through the use of a quantum
that the two approaches are so different. It should be notethode-coupling theorfQMCT) for the construction of the

+1
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memory function. For example, an approximate closure oproaches to density fluctuation in bulk superfluid helium

the form K*(k,t)~K, og(K,t) +K, qguct(k,t) where the
“gquantum binary” portion[K, og(k,t)] is determined from

[11], the development of this approach is of obvious impor-
tance. Results foB(k,w) in *He near and below, com-

a short-time expansion of the exact Kubo-transformedputed by the quantum mode-coupling approach will be pre-
memory function, while the quantum mode-coupling portionsented in a future work.

[K«.omct(k,t) ] is obtained with a generalization of the stan-
dard expressioh12] for classical liquids,

1
Kguor(kt) =5 2 ialF(a.OF(lk=ql.0

—Fa(a,0)Fg(k—al,)], 2
where®, ,~[2/3%(q)]| Vi ¢/? and
.. d,
1 <pqqu,§lﬁ>
972N s1(q)s(|k—ql)
AL (P-aPa-:PY) .

S(k) S“(q)S“(lk—al)

In the above equatiofg .(k,t) refers to the short-time bi-
nary scattering function, which can be obtained from
simple quantum generalization of the classical version of thi
function Fg(k,t) = Fg(k,O)exp(—wi(k)tZIZ). All quantum in-

put may again be obtained from path-integral quantu
Monte Carlo techniquel25]. Interestingly, a simplified ver-
sion of this approacliwithout exactly determined static in-

a

m

In conclusion we have developed a simple quantum mo-
lecular hydrodynamic formalism to study dynamical phe-
nomena in quantum liquids. Our approach does not rely on
computing dynamical trajectories of any kind. The computa-
tion of any time correlation function is accomplished by aug-
menting the exactquantum generalized Langevin equation
for the Kubo transform of the correlation function with exact
static structural input and a suitable approximation to the
memory function. We have applied our approach to study
collective density fluctuations in liquid parasthear the
triple point. Motivated by the fact that the inclusion of quan-
tum fluctuations results in a “softening” of the effective po-
tential, we have used a very simple form for the memory
function(QVM), where the lifetime of the exponential decay
of the memory function was obtained from path-integral
Monte Carlo simulations. Semiquantitative agreement was
obtained in comparison to the experiment of Bermejal.

[7]. We have suggested that the QVM can be improved using
an approximate closure for the memory function based on
the mode-coupling theory. The method developed here is in
o0 way confined to the case of para;tnd should be ex-
remely useful in general for the difficult problem of compu-
tation of dynamical observables in quantum liquids.
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